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SUMMARY

In paper I a theory of functional organization in terms of functional interactions was proposed for a
formal biological system (FBs). A functional interaction was defined as the product emitted by a
structural unit, i.e. an assembly of molecules, cells, tissues or organs, which acts on another. We have
shown that a self-association hypothesis could be an explanation for the source of these functional
interactions because it is consistent with increased stability of the system after association. The
construction of the set of interactions provides the topology of the biological system, called (o-FBs), in
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contrast to the (p-FBs) which describes the dynamics of the processes associated with the functional
interactions. In this paper, an optimum principle is established, due to the non-symmetry of functional
interactions, which could explain the stability of an FBs, and a criterion of evolution for the hierarchical
topological organization of a FBs during development is deduced from that principle. The combinatorics
of the (0-FBs) leads to the topological stability of the related graph. It is shown that this problem can be
expressed as the re-distribution of sources and sinks, when one of them is suppressed, given the constraint
of the invariance of the physiological function. Such an optimum principle could be called a ‘principle of
increase in functional order by hierarchy’.

The first step is the formulation of a ‘potential’ for the functional organization, which describes the
ability of the system to combine functional interactions, such that the principle of vital coherence (paper
I) is satisfied. This function measures the number of potential functional interactions. The second step is
to discover the maximum of this function. Biological systems in such a state of maximum organization
are shown to satisfy particular dynamics, which can be experimentally verified: either the number of
sinks decreases, or this number increases, in a monotonic way. The class of systems considered here is
assumed to satisfy such an extremum hypothesis. The third step is a study of the variation of the degree
of organization (paper I), i.e. the number of structural units when the biological system is growing. We
establish an optimum principle for a new function called ‘orgatropy’. By adding a criterion of
specialization to the system we show the emergence of a level of organization with a re-organization of
the system. A ‘hierarchization operator’ is defined, which leads to the fourth step of this theory, i.e. the
conditions of the variation in time of the (o-FBs) sub-system, as described by a ‘functional order’
mathematical function. It is shown that this function is a Lyapounov function, and drives the system
towards a stable state with maximum specialization. Two consequences of the theory are studied: (i) the
monotonic phases which are observed during development of the nervous system, and (ii) the similarities
and differences observed between physical systems and biological systems.

Fi=1,...,L)
NOTATIONS AND SYMBOLS defines the level of organization (')
gi(n) number of synapses for the k-th target- Fy

J
neuron, k= 1,n unit from a class E; to a class E,

elementary physiological function:

number of elementary transformations per time
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k Boltzmann constant

n number of units with a specific property

(né)azl,yt distribution of functional links between
structural units at this level: defines the
functional organization

np,p, number of units that synthesize P, and not P;

n® number of sinks for the product P; in initial
state at time ¢©

o' number of organizations at level /

7,ro  space coordinates

u,u;,u; structural units

(Py,Py,Py Py, . . .) units that supply P;,Ps,P3,P,,

. (number N{? in initial state)

u* modified structural unit having a missing
product

Uy = (w1 )t 1 = (W51 )
units

Yar = I ax(xy) value of potential in the state of
maximal organization

D(x) = Il ,,, — II(x) Lyapounov function for IT

D, domain in the s-space

E(x}) =n. integer part of the real x;
.. .: the synapse

EAP = {EEM, Yo}  set of structures which produces
the action potential: the neuron

EY = {E#"; ¥i} the real neural network localized
in the r-space

F hierarchical system

F: vouxy-oyy=F)=1I,,0 k)

associated structural

or gatropy
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set of substructures: channels, receptors,

F,; number of elementary transformations per time
unit towards the environment

G graph of the functional organization

H Boltzmann quantity of information

S entropy

(I}) level of organization of rank /

L number of levels of organization

M matrix of the functional organization

N occupation number of the classes

N{)  number of units specialized in the production
of P, in a given state (*), e.g. initial or

final

N?  total number of units which synthesise a- and
p-products

(N,a) representation in terms of occupation
numbers

P,, 1 <a<p productsin a structural unit

P,;=P,, denotes an a-product synthesized in the
-unit

P,,P, products

S biological sub-system at level /

S; substrate

T, time coordinate

T' timescale at level [

U; population of elements %, each element
containing j units

X =[mRNA]

Kot = (KarsXagy o - o Xag) = (X,%2, « « o %) u
equilibrium point

0 hierarchization operator
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transformations that describe the functional
interaction: Py = ®(Py) = ¢ o Y (Py)
&, postsynaptic potential
wi2(f) functional interaction between two elements

51 and s, localized in D,.

v/ degree of functional organization
v =al/) 4 n{/)  degree when the specialization of
the /-level exists at final time ¢!/’
(corresponds to a partition into two subsets
of n{/) and n{/) units)

¢)¢)¢

L
Q)= — Y. F'v') functional order
is1

= density-connectivity of synapses between neurons
(Y,p) representation
% functional interaction () from the i- to the
J-unit

p geometrical parameter of the biological system

p density of neurons

IT'(n) potential of functional organization at level [

for n of the v units

potential of functional organization for the

[-level at initial time ¢,

WIT = IT'*'  the same for the [-level before re-
organization (or the [ + 1-level after re-
organization) at final time ¢,

IT', potential of organization after a total
hierarchization when the number of products
is odd, i.e. after complete specialization

o

1. INTRODUCTION: VARIATIONAL
PRINCIPLES IN BIOLOGY

A theory of functional organization in terms of
functional interactions was proposed for a formal
biological system (FBs) in the previous paper of this
series (Chauvet 1993c¢), referred to below as paper I. A
functional interaction, identified in the theory to an
elementary physiological function, was defined as the
action of a product emitted by one structural unit on
another. The emitted product P, ; synthesized by the
source u, is transferred towards a sink u,. This process
is described by the relation: P, ;= Y3s(P,,). For
example, a molecule emitted by a specific cell acts
on another cell within which it induces a series of
transformations. The FBs concept was introduced to
provide a mathematically defined biological system
with specific properties as similar as possible to those
of a real biological system. An FBs is characterized by
two such properties: (1) it is an ‘equipotent system’, i.e.
all the potentialities of the genome are identical at
each level of organization; and (ii) it is a ‘mutational
system’ (see paper I), in which the structural units
undergo independent, modifications. The construction
of the set of functional interactions, constituting the
topology of the biological system, is based on a very
simple — although non-trivial — hypothesis, called the
self-association hypothesis. According to this hypothe-
interaction between two structural units
becomes necessary when the elementary function of
one of them is destroyed, i.e. when a source becomes a
sink. Indeed, each elementary function can be poten-

sis, an
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tially executed by a structural unit for its own
survival. Thus, if such a function is lost, for example
due to the occurrence of micromutations, the survival
condition of the structural unit (the cell for instance)
implies that the missing product be made available by
another unit synthesizing the product. The topological
system (o-FBs) composed of such functional interac-
tions represents the functional organization of the FBs.
The (o-FBs) is constructed according to what we have
called the principle of vital coherence (paper I).

The hypothesis of self-association was shown to be
valid, at least in the case of an FBS with two
fundamental properties of living organisms: metabo-
lism and self-reproduction. For a specific example,
we demonstrated that self-association increases the
domain of stability of the dynamic system (D-FBs)
describing the physiological function, represented by
the hierarchical system of functional interactions. The
(p-FBs) is associated with the (o-FBs) defined by the
mathematical graph representing the set of functional
interactions. The property of the self-association that
increases the domain of stability may then be formu-
lated by saying that the increase in the complexity of
the (o-FBs) by self-association is a natural tendency of
the biological system since it accompanies an increase
in the domain of stability of the corresponding (D-FBs).
Thus, there exists a natural tendency for a biological
system to move towards greater complexity during
development as soon as the conditions for self-associa-
tion are satisfied, for example after the occurrence of
micromutations or under the influence of a genetic
program.

An integrated description of physiological pheno-
mena from the cell level to the organ level must
include a unique formalized definition of the biologi-
cal subsystem within a mathematical framework. Such
a description will have to be able to deal simulta-
neously with several levels of organization. Indeed, the
nuclear and cytoplasmic subsystems of the cell and, for
example, the renal or respiratory subsystems of living
organisms can all be considered as hierarchical sys-
tems based on the same organizational principles
(Chauvet 1987, 1990). At the higher levels of func-
tional organization, we have the intuitive impression
of an increase in complexity, which may be thought of
as an increase in the number of state variables of the
biological system. However, in reality the hierarchy of
the system leads to a decrease in the number of state
variables.

In the conceptual framework proposed here, we
shall see that because of the relationship between the
topology and the dynamics of a biological system, there
is a simultaneous increase in the complexity of the
(o-FBs) and the (p-rBs). The hypothesis of self-asso-
ciation will be used to express functional complexity
in terms of combinations of functional interactions
represented by oriented diagraphs.

The measurement of the complexity of a system
poses a fascinating challenge in all branches of science
and has stimulated much research. For example,
Ferdinand (1974) has used the concept of ‘default
entropy’ to evaluate the complexity of computer
circuitry, and Walter (1980, 1983) has defined a
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family of indices of complexity linked to the stability of
compartmental systems. In the case of biological
functional organization, the advantage of our method
stems from the double description: topological and
dynamical. The former describes the existence of
functional interactions, whereas the latter describes
the spatiotemporal changes of the processes associated
with these interactions. Consequently, the stability of
the biological system will correspond to that of the two
systems when the number of structural units varies.

In this variational approach, a fundamental theore-
tical question arises concerning the existence of an
optimum principle, similar to optimum principles
known in the physical sciences, capable of explaining
the stability of a formal biological system. Such a
principle could be used as a criterion for the evolution
of hierarchical biological systems and would provide a
model for the comparison of biological and physical
systems. We shall therefore address this important
question. The topological stability of the graph of the
system (o-FBs) will be expressed as the redistribution
of the edges between the vertices of the graph, i.e. as
the redistribution of the sources and sinks when one of
these is destroyed, taking into account the constraint
of the invariance of the physiological function. This
constraint, expressed in terms of the principle of vital
coherence, implies that the functional interactions
reorganize themselves by self-association in such a way
that the collective function subsists after the reorgani-
zation. We shall demonstrate that only one hypo-
thesis, experimentally verifiable, is sufficient for the
basis of this theory.

2. THE POTENTIAL OF FUNCTIONAL
ORGANIZATION

(@) The nature of the concept: combinatorial
approach and non-symmetry

If an FBs is considered to be an equipotent system, i.e.
made up of structural units that can have the same
elementary physiological functions, then the self-
association hypothesis originates in the functional
organization of these structural units (paper I), and
subsequently in a hierarchical system. As mentioned
above, all the cells of a given organism have the same
potentialities of expression at the lowest gene level of
organization. As we shall see, this property can be
used for the construction of the FBs corresponding to
the hierarchical system. The (o-FBs) consists in func-
tional interactions, i.e. structural units and elementary
functions, the topology of which is the functional
organization. More precisely, the functional organiza-
tion at level / is defined by the distribution (r{"),_ L
of functional links between structural units at this
level. This distribution will be called a state of
organization. According to the definitions given in
paper I, n{") is also the number of zeros in the row o of
the matrix M, i.e. the number of sinks for the function
P, of the system.

The rBs in the observed state of organization,
because of the property of idempotence, presents other
non-observed, potential states of organization. These

)
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states exist as potentialities in the system, but are not
expressed. For example, the passage of organisms
through particular stages during morphogenesis and
the capacity of regeneration in certain species show
that such potential states of organization can be
observed during the life of the system.

Let (S) be a set of v structural units all having the
same potentialities. According to the self-association
hypothesis, each unit is either a source or a sink, If a
source could not become a sink it would die following
an alteration in the function. Suppose that n of the v
units do not yield the product necessary for their
survival. These n units will therefore have to be
coupled to the other (v —=n) units. A number of
possibilities exists for the associations that create the
topology of an (o-rBs). I propose a function II(n),
called the potential of functional organization, repre-
senting the reservoir of possibilities during the lifetime
of the system. This mathematical function is deter-
mined if the following properties are verified: (i) I
gives a measure of the number of potential functional
interactions; (ii) I7 leads, under some conditions, to a
hierarchy of the system; (iii) the hierarchy found is
such that the value of IT, calculated for a level I,
decreases from this level [ to the next higher (/ + 1);
and (iv) the value of II, calculated for the total
hierarchical system, increases, whereas a re-organiza-
tion of the system, as defined below, implies a decrease
in this value.

These four properties can be seen to represent
general facts about biological systems. However, the
problem of the evolution of the functional organiza-
tion is difficult to solve. Indeed, if a function such as IT
admittedly describes a certain biological reality,
further questions immediately arise. Among all the
possible organizations available to the system during
its evolution, which particular one was chosen? And
why?

(b) Definition and formulation

Definition VI: potential of functional organization
The potential, IT at level [ is the logarithm of the
number o' of all functional organizations that are
available (and possible) for the observed state of
organization, at its ¢th-level. It is assumed that all
structural units have identical potentialities.

Let o’ be the number of organizations available for the
observed state, i.e. a sequence (n} ), = 1,4/, where n}
is the number of sinks for the P,-function at level /:

ol =TT = nby=, (H

because n} units can be coupled to the (V' — n, ) units
which have the P,-function, and all organizations can
be associated to one another such that 1 < o < . The
number of structural units at level / is v/, and is called
the degree of organization of the system at this level
because it is the number of classes of structural
equivalence (see paper I). Then:


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

Optimum principle of an (o-FBs) system G. A. Chauvet 449

3 sinks 2 sinks 1 sink
1 source 2 sources 3 sources
Potential=0 Potential=1n 4 Potential=In 3
Uy Uy
o o
Uy Uy /
I’l
o ;.0
ST
O u 3 o’"“ u 3
u, uy
Figure 1. Combinatoric representation of the functional

organization as relations between sources and sinks. In this
example, with four structural units and one product, there
exist three values of the potential of organization when the
number of sinks equals 3,2,1. The condition is that a source
cannot be a sink.

ul
II'=lno'= Y nIn(v' —nl),

a=1

,,z

Y b ln(v — nl), (2)

la=1

\IM{\

L
IT= 3} In
I=1 l

where L is the number of levels and p'is the number of
products at level I. A simplified form would be:

II=> 3 [sinks]In [sources].
levels products

Note that v —n' >0 and IT=0, if 2t =0 or
vl —nl =1, i.e. if there exists no sink or only one
source (for an example, see figure 1). These two
eventualities are the simplest; all the others are more
complex and correspond to combinations of interac-
tions (Chauvet 1987). Thus, IT could be interpreted to
represent functional complexity. However, as we shall
see, the concept of potential can be used as the basis
for the development of a variational theory.

3. CRITERION OF MAXIMALITY FOR THE
POTENTIAL OR ORGANIZATION: A CLASS
OF BIOLOGICAL SYSTEMS

(a) States of maximum organization

Can the [Il-function describe the dynamics of an
(o-FBs)? A positive answer is supported by the exis-
tence of a particular organization (ny,) for which
II(ny) is the maximum value (figure 2). It is easy to
deduce the following properties from definition VI:

Property 1

The potential of organization IT increases with both
the degree of organization and the number of levels
for a given distribution (nl), & = 1, u.

Property 11

For a given [-level and a given v-degree of organi-
zation, there exists a maximum for the potential of
organization obtained for the value (my,) of the
organization. This particular value I1,,(ny,) is called
the maximal potential or organization and describes a
compromise between the complete interaction and
the complete independence of the units at this level.

Phil. Trans. R. Soc. Lond. B (1993)

Proof: let n, = E(x.) be the integer part of the real x,.
Then, IT' is now the real function: x — IT(x) defined in
R!. As mentioned in the introduction, the system is
Darwinian and characterized by random suppressions
or appearances of an individual product P,. Mathe-
matically, this property corresponds to independent
variations dx, of x, that occur in a given unit. Then,
the maximum of IT (which is not a bound maximum)
is obtained for (x,),-1,, which verifies the equation:

» "
= Y di, = Y <1n(v——xa) . )dxa=0,

a=1 a=1 V — Xy
where I, = x,In(v — x,) is the potential correspond-
ing to product P,, and where the superscript [ has
been suppressed for clarity. Therefore, Vae[l,u] a
necessary condition for extremum is:

X

In(v — x,) — = 0. (4)

V= %

It is possible to show that (i) II(x) has really a
maximum at one point in [0,y — 1]% and (ii) this
maximum is unique (Appendix 1).

All structural units involved in the generation of a
physiological function are supposed to have identical
elementary physiological functions. This is the case in
a non-differentiated tissue, in which all cells have the
same individual potentialities, and which is being
transformed into a differentiated tissue, i.e. one in
which some cells achieve individual products for all
the others. We could say that the graph G and the
matrix M come into being when the ‘functional
isotropy’ has disappeared. The two limit cases corres-
pond to ‘functional isotropy’: (1) when n, = 0, and all
units are independent; and (2) when 7, =v — 1, and
only one unit is specialized for the elementary function
P,. Then, a possible interpretation of II could be the
maximum of functional anisotropy associated with
potential organizations.

b) Extremum hypothesis: a class of biological
Lyp &4
systems

Two important properties can be deduced from the
definition of IT(x).

(i) The organizational state is an attractor

Property II1

The state of maximal organization (called the
organizational state) for the maximal potential y,, =
II(x,) is an attractor for the dynamics of the organi-
zation which tends to x,,, either by decreasing or by
increasing values of x when the time ¢ tends towards

tM~

Proof: D(x) = I, — II(x), where IT,,, is the state of
maximal organization, is a Lyapounov function when
x(t), considered to be a dynamical system, tends
towards wx,, either by decreasing or by increasing
values, according to the initial value of x, i.e.:

Veae[1,u] Vi, D(x,) > 0.
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Potential TI(x)

Optimum principle of an (0-FBs) system

120

80

40

Number of units: V

20

sinks X

30 40 50 60

Figure 2. Potential of functional organisation for six values of the degree, from 10 to 60. The maximum of the
potential determines a particular organization that is assumed to define the biological system.

The time derivative of D(x(¢)) is negative or null:

dD oD dx,
At “ox, dt’

if the two following derivatives:
dD|ox,, dx,/d¢, (3)

have opposite signs (Appendix 2). Then the dynami-
cal system which describes the time evolution of the
graph:

dxa/dt :\f;t(xhxb cee xy): (6)

has an equilibrium point at Xy = (%, - -
%3r) = (¥1,%, . . ., %,) s Which is reached at a time ¢,
according to increased values when x < X, and
decreased when x > X,,. In the latter case, 0D/0x, is
positive (x > X,,) and the time derivative of x, must
be negative (figure 3). Similarly, in the first case
(x < Xy), the partial derivative 0D/0x, is negative
and the time derivative of x, must be positive.

(i) Consequence: extremum hypothesis for the time variation of
the number of sinks

There are two possibilities for the functional organi-
zation of the biological system for which the potential
of organization is given by the function I1(x): before
ty, the number of sinks is either decreasing or
increasing towards a stable limit. Such a monotone
property of the variation of the number of sinks is
important for the characterization of the potential of
organization. An interpretation of this result in the
second case could be the special role given to the
sources of a system for having a maximal redundance
among the structural units: the biological (Darwinian)
system would evolve in time so that the number of
sites of production (the sources) remains maximum.

Extremum hypothesis

A biological system evolves from initial conditions
such that the number of sinks either decreases or

Phil. Trans. R. Soc. Lond. B (1993)

increases, i.e. corresponds to a time monotonic func-
tion, and therefore reaches a state where the potential
of organization is maximum. This extremum hypothe-
sis defines a class of formal biological systems.

The validity of the proposed theory, which is finally
based on this extremum hypothesis can be experimen-
tally tested. The definition of functional interactions
makes it possible to identify sources and sinks, and to
verify the decreasing monotonic property of the
number of sinks, even if the explicit dynamics of the
system is unknown. Another possibility would be to
check the validity of the consequences of the theory
developed below.

4. CRITERION OF EVOLUTION FOR THE
FUNCTIONAL ORGANIZATION: ORGATROPY

(a) The concept of ‘orgatropy’

In the preceding section, the influence of the variation
of the number of sinks on the functional organization
was studied by means of the potential of organization.
In this section, we shall explore the effect of a
variation of the number of structural units in the
system, i.e. the effect of the degree of organization.
Some interesting results can be deduced from such
variations corresponding to the development of the
biological system. For example, when the degree of
organization increases, the topology of the system is
transformed such that the constraint of maximum
potential is satisfied. We shall see that the evolution of
the system is governed by a function called ‘orga-
tropy’, deduced from the function IT.

Property IV: the concept of orgatropy

If the degree of organization V' changes with a
variation in the number of structural units in the level
[ without re-organization of the system, then the
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Figure 3. This set of three figures illustrates the fundamental
general property III of the existence of an attractor for an
organization having a maximal potential. Here is repre-
sented a specific case with two state variables and a degree
that equals 300. (a) The dynamics of the organization (x1(¢),
%5(t)), i.e. the number of sinks for two products P; and Ps,
tend asymptotically towards x, =160 either by decreasing
values from initial conditions (0,0), or by increasing values
from initial conditions (290, 290). (4) Corresponding varia-
tion in time of the potential II(x1(¢), x9(2))=x1
In(v—x1) + xoln(v —xy) for the dynamics shown in (a). (¢)
Potential and related Lyapounov function of the dynamics
shown in (a) and (b), with degree v=30.

system with maximum potential satisfies the criterion
of evolution for the function F called orgatropy:

dF{() >0, (7)

and defined from the following functions 4 and I7,,,
as:

Fvoxy—oyy=Fv)=1I_,0h().

Phil. Trans. R. Soc. Lond. B (1993)

This function is of importance with regard to the
evolution of the system (o-FBs) and has been called
orgatropy because of its similarity in form to physical
entropy, as discussed below: the variation in time of
II(n};) for level [ is given by the function F when the
degree of organization at that level varies without a
re-organization of the system.

Proof: the maximum of I is given by equation (4):
dII(xy) = 0= xp = (v — x3)In(v — x3¢). (8)

Let £ be the implicit function of v:v — xu = A(v).
Then the equation of the maxima is obtained by
eliminating v between [I(x) = xIn(v — x) at x,; and
dI1(x) = O:

Yar = Toan(%ar) = 31 [(V — xa1).-

Then:

Yar = 2% In x5 — x3710 70, (9)

For the function F(v) = I, o h(v), as defined above,
it is easy to show that F is the product of two
increasing functions, £ and I1,,. Indeed, by differen-
tiating their definitional equation, one has

dyar 2 + In(x3 Jyu)

dixy, o1+ (Xarlyar) (10)

and:

dxy, 1+ In(v — xy)

= > 0. 11
v 240 —xy) (1)
Because
2
X
ﬂ:v—xM>1, x—M>O,
Ym Ym

the first ratio (10) is positive. Thus, I1,,, and A
increase, and therefore the product F also increases.
Finally, F(v) is obtained from the solution of:

2
Xyr + XagYar — Viar = 0,

which is moved in y,, = I, (xar).

(b) Does orgatropy provide a criterion of evolution
Jfor the (0-FBs)?

When the system grows by an increase in the number
v(¢) of structural units, the concentration of sources and
sinks varies such that the potential of organization
remains maximum. But the quality of structural units is
conserved, i.e. a source remains a source, and a sink
remains a sink. In this case, the system (0-FBs) evolves
in time without re-organization. We have shown that
orgatropy cannot decrease, and thus gives a direction
for its time evolution. The biological system evolves
during development such that orgatropy, which repre-
sents the most developed combination of potentialities,
increases.
chical system. A major problem is to determine if some

However, re-organizations are observed during the
developmental process. Such re-organizations may be
formally described as a sequence of specializations
(paper I). Functional interactions are created during
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development, i.e. sources and sinks result in a hierar-
principle governs this evolution. The orgatropy func-
tion does not include the process of specialization and
therefore cannot describe the evolution of the system
as a hierarchical system. It describes only a part of this
evolution, i.e. the fact that functional interactions are
added to the system without re-organization, therefore
without the emergence of a hierarchy. But orgatropy
includes the non-symmetry which is the main pro-
perty of the functional interaction. This result is
important in the framework of the theory, because of
its self-coherence, and shows a fundamental distinc-
tion with physical entropy S = plnp that describes the
symmetrical structural interactions (see below).

5. CRITERION OF SPECIALIZATION AND
RE-ORGANIZATION OF THE (O-FBS)

(a) Criterion of specialization

(1) The concept of specialization

The mathematical definition of specialization and the
emergence of levels of organization in a hierarchical
system raises a major difficulty. If the concept of
functional interaction is accepted, then we can assign
the following meaning to the notion of specialization.
Let us assume that the [-level contains 7, sinks for the
product P;, and n, sinks for the product P, such that
m + ny < v (figure 4). Thus, at level /, some structural
units synthesize a product P;, some synthesize P,
some synthesize both, and some synthesize other
products different from P; and P,, i.e.:

V = npp, + ”IT1P2+ nP1F2+ 7p Py

In this equation, npp, for example, is the number of
units that synthesize P, and not P;. Therefore:

1y = Np,p, + 1pp,, Ny = Npp, + Npp,-

If ny + ny < v then: np p, # 0, i.e. some units synthesize
P, and P,. Thus: npp, > np5,.
Therefore, we define specialization as follows:

Definition

Given, at initial time @ 2{® sinks for the product Py,
and n§” sinks for the product P, such that v >
H® + nf”, the transformation at this l-level, called
specialization of the [-level at final time ¢, corres-
ponds to a partition into two subsets of n{) and ng/)
units such that:

v =al) 4 afh). (12)

(ii) The relation between specialization and hierarchization
Thus, according to the definition of a structural
unit (definition I, paper I), the subset constitutes a
class of equivalence, and therefore a new structural
unit: the transformation from initial time ¢ to final
time () corresponds to the emergence of a level of
organization defined by new structural units that are
specialized in the dynamics of {P;,P,}. This transfor-
mation of the ‘quality’ of units, which implies a
different number of these units with a given quality,
will be denoted by the specific operator 6. When, at
time ¢@ n{? sinks for the product P;, and n” sinks for
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n, sinks for P, : x

State (0)
n;+n, <v

n, sinks forP, : o

State ()

n1+n2 =V

Figure 4. An interpretation of the mechanism of specializa-
tion with two products. From the top to the bottom,
successive self-associations lead to two sets of structural units
that produce only P; or P;. At the beginning of the process,
in the state denoted as (0), there are ny sinks for P;, and ny
other sinks such that: n;+n;<v. In the final state (f) there
are only two sets, one producing P; (on the right), the other
producing P (on the left), and therefore: ny +np=v, which is
the condition of specialization.

the product P, constitute a partition of v at {9, we
have the following property:

Property V: hierarchization operator

Let / be a level of organization with v structural
units whose 7{® and n{” are sinks for the products P;
and P, respectively. A necessary and sufficient condi-
tion for the re-organization of the system through
emergence of a higher level of organization is the
maximization of [T

dIT'(n{® ") = 0, (13)

where n{” and #? are two sets of structural units such

that v\ # 2{% + nf, specialized in the production of

P, and P, respectively. Then:
v = v —yO <0, OF' <0, (14)

and the system, which reaches its maximum is stabi-
lized for P, and P,.

Note that if dv/> 0 without re-organization, then
v) — v < 0 after re-organization. That transforma-
tion in the hierarchical system is denoted by the
operator 4:0v' < 0. With the same notation, §F' < 0
whereas dF* > 0.

Proof: the condition of maximality of IT is:
0I1/0x; = 0I1]0x, = 0. (15)

In the initial state (0), there are n{® sinks and n®
sources in the [-level of organization, such that:
v # (% 4 nf®. In the final state (f), the partition of
the system is expressed by:

v = p{) + ngl), ) £ O, (16)
Conditions (4) give two relations in % and x,:

In(v — %) — x/(v— ) =0=Inx, = x/x,,

In(v — %) — x/(v — %) = 0=>1Inw; = xp/x, (17)
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which determine x{/) and x§’), and then v/). The
vector (x{/),x4)) = (e,e) is the only solution of the
system (17):

X = X9 In Xy,

Xg = x; Inx;.

(18)

A mathematical difficulty exists for the solution in
integer numbers. In Appendix 3, we show that the
partition of the system with a maximum potential can
also be obtained for the vectors (3,3) and (4,4). An
interpretation of this strange property will be given
below. Let us assume now that these three solutions
are possible, and take the solution (2,2) as a represen-
tative solution in the following. Then:

(nt",ng") = (2,2), (19)

is the integer solution of this problem. Inversely, if ¢ is
a solution of (17), then IT is maximal. Thus, we see
that if we have a partition of v/} units into x{/) sinks
for P; and x4”) sinks for P,, then the potential IT will
be maximal if #{/) = »/) = e.

Finally, d¥ =0, because dfI(x)/dx =0 for x =e,
and I1,,(¢) =e The transformation from v o
v < v which corresponds to an increase of units
v(tr) > v(lp) without re-organization is such that
dF(v) 2 0: the criterion of evolution F(v(i/)) =
F(v(t)) is verified, and emergence of a level of
organization represented by operator ¢ is described in
terms of the orgatropy function by the relation:
SF(v) = FwY)) — F(v@) < 0 that is therefore verified
with ¢ = F(v/)). For this reason, § will be called the
‘hierarchization operator’.

(b) Consequence: mathematical expressions of
specialization and emergence of a level of
organization

When the /-level of organization contains exactly
v = N structural units whose n; receive P; (or equiva-
lently, Ny = N — n; emit Py), and 7y receive Py(Ny =
N — ny emit P;), then the constraint:

W = ) 4 g, (20)

implies the creation of a higher (/ + I)-level, so that
N, structural units synthesize Py, and N, synthesize P;.
From definition I (see paper I), a structural equiva-
lence class results from the specialization of units, and
a higher level is obtained (figure 5). From property
III, this system passes from one stable extremum of
the organization to another when the degre of organi-
zation varies. So, in one state of organization, one has
a mathematical expression of specialization as:

Ny (P)) + Ny(t;P5) = N2 = constant.
Or:
dNP(t) = 0, (21)

that describes the time invariance of the partition at
level [ for products P; and P,.
Both conditions: IT maximal and partition of v, lead
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Figure 5. Emergence of a level of organization. Assuming
that the conditions of specializatign have occurred, as in
figure 4, then we see that two new structural units have been
created at the upper level, because they are respectively
specialized in the production of P; and P;. On the left, a
similar figure to figure 4; on the right, the new level of
organization.

to a reduction of the number of structural units, and
correlatively to the creation of a level for the corres-
ponding hierarchical system:

=2« nf) =2 <nf. (22)

These two new sets of units collectively execute the
elementary physiological functions P, and P; respec-
tively. The variation of the potential of organization
from the initial state (0) to the final state (f) is
expressed by:

O = n{% In n¥ + 1 In n{?,

NI = n{ In 2" + ng/) In 2 = 4. (23)
Then:
(O)Hl> (f)H1=H1+1. (24)

This relation corresponds to the required property
(iii) of IT in §2a. Expression (24) mathematically
describes the emergence of a level of organization.

(¢) Functional order

In section 4, a function F(v) was used to describe
the evolution of an FBs without re-organization. Here,
a similar function is found to describe the evolution of
the FBs when re-organization (with specialization) is
assumed. It is shown that a function Q(t), called the
functional order, describes the evolution of the hierar-
chical system.

Definition
The functional order of a biological hierarchical
system is defined by the state function:

Q) = — [ZIF’(v’). (25)

Theorem: on the time evolution of an (0-FBs)
Let a biological system be defined by the extremum
hypothesis:

H(”z’w)t:LL maximal <> Vo = 1,4/
(dnl(¢) <0
or (dni(¢) =0

or (dni(t) >0 if nl < mny),

it nl>nky),

if no[t = nM)a
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for all {=1,L. If its degree of organization, Vv, is
modified such that the criterion of specialization is
satisfied for products P, and Pg:

dNf(t) =0, (27)

then the self-organization of the system is such that:

1. At most two structural equivalence classes are
created, each being specialized in the production of a
given product, according to a bi-unitary process (by

association of two units):
o' < 0. (28)

2. Its functional order increases and corresponds to
the emergence of one level of organization:

02 =0, (29)
and simultaneously its orgatropy decreases:

OF < 0.

3. The potential of organization IT decreases:
O - '+ = DI < O, (30)

4, At the limit, in the state of maximum specializa-
tion, IT is minimum and its value is:

0 = 2, (31)
with p = /2 if u' is even, and:
=9 — 1) + ITh, (32)

with p = (u! — 1)/2 if i is odd, where p' is the number
of products in the [-level before the complete speciali-
zation of the units, and p is the step of the last product
synthesized.

Demonstration

1. Property V (the criterion of specialization) can be
generalized as follows. The question is: in a system
with v structural units that exchange their products, is
it possible to obtain a partition of v according to the
numbers (7. Ja=1,? In other words, can the number of
units N, = Nf — n, evolve towards the number of
units N which are specialized in the production of
P,, i.e. which emit only the product P, consumed by
all the other units? The extremum condition (26)
leads to a system that is similar to (17):

n, = Sy In S, Yo = 1,1,
and:
"
Soz = Z ng ﬁ # o,
f=1

whose solution in R* is:
= ((p—=1))expl/(p—1),

for all «. In N, n, =0 when w = 3. Therefore, the
partition applies only to a maximum of two sets of
units. :

2. The functional order is defined by (25), and its
time derivative is:

de L OF' v

Lo _ Y ——>0,

de 2z vt ot

=1
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due to the signs of dF/dv =0 (property IV), and
0v < 0 (property V for two given products at this
level).

3. The potential of organization in the initial state (0)
is:

{
I

O =% (v'— N:)In N}, (33)
a=1

The condition of specialization (27) implies:

No(6P,) + Np(t; Py) = Nf = K, (34)

where K is a constant. It describes the invariance of
the partition at this level and indicates whether a
variation occurs in the topology of the system. There-
fore, with a = 1 and f = 2, following the property V,
the outcome is:

{
n
O = NOIn N9 + NOIn N + Y IT., (35)
=3
and:
Nl = N2 In N2,
Ny = N;ln Ny,
N = N =2
So the re-organization of the /-level leads to:
1
%
NIF=2+2+ Y IT, < OIT, (36)
a=3
assuming that II'*! is defined by:
m+t = I, (87)

4. This condition of specialization can be repeated for
two elementary functions P, and Pg, o, = 3 to u' if '
is even, and o, = 3 to u' — 1 if ' is odd. Then, the
decomposition of this expression is obtained p = p//2
times, if u’is even, and p = (u' — 1)/2 if p' is odd.

(d) Evolution of an (0-FBS) during development:
discussion

Two biological properties are characteristic of the
FBs studied here: (i) identical potentialities for all
structural units (equipotent system) at each level, and
(ii) variations within a given unit for a given product
(Darwinian mutational system or genetic program). It
is important to know whether these biological proper-
ties lead to the interpretation of other biological
properties, and whether they provide the means of
evolving into a more complex biological system, closer
to a real biological system. The criterion for the
evolution of functional organization can lead to some
formalized properties of biological systems that will
have to be experimentally confirmed.

For example, let us consider a (formal) tissue
having the following organization: N units w (Py,Ps,
P;,P,, . . .) which supply P,Ps,P3,P,, . . .. With the
same notation, N§” units up(Py,Py,Ps,Py, . . .), N§¥
units ug(Py,Py, Py, Py, . . .), . . . supply Py,Py,P3,Py, . . ..
According to the above theorem, the /-level will evolve
towards a new organization (N, NSO NSO NO, L)
that can be described by the sequence:
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2%y (P, Ps, Py, . . .), 2%us(Py,Ps,Py, .. .),
So, we can say that, in the final state (), the two units
w, (Py,Ps,Py, . . .) are two structural equivalence classes
that contain all units supplying Py, which is considered
in state (0) before the re-organization of the entire
system. They constitute the highest level of organiza-
tion of the hierarchical system, which is specialized in
the production of P;. The same result is obtained for
uy(Py,Ps,Py, . . .). Therefore, two parallel hierarchical
systems, coupled by both functional interactions P;
and P,, appear in the final state (f) (figure 5).

In the previous section, we have shown that a
system with a maximum potential can increase its
specialization by achieving a partition into two new
structural units. The analysis with real numbers,
which gives a unique solution (¢,¢) leads to three
possibilities with integer numbers: (2,2), (3,3) and
(4,4). It is interesting to look for some physiological
functions having such a number of structural units. At
the highest level of functional organization, most of
the physiological functions are realized by two struc-
tural units, e.g. eyes, lungs, and kidneys, but only one
function, calcium control, involves four structural
units: the parathyroids.

6. APPLICATION TO THE NERVOUS SYSTEM
(a) Controlling and controlled systems

It is possible to elicit at least two kinds of interaction
in a physiological system composed of structural units
(definition I, paper I): (i) the organical links are the
functional interactions between, and within, the levels
of organization of the (0-FBs) (see definition II, paper
I). The collective behavior of such interactions, at a
given level, is a collective function called a physiologi-
cal function. The levels are arranged in a hierarchical
system that together can be identified as one organ (or
an organit) of an organism, (ii) the control links need
another hierarchical system, called the controlling
system, whose physiological functions act upon
defined sites (levels of organization) of the controlled
system. Finally, there exists a constitutive coupling
due to the internal dynamics of each system: the
dynamics at one level will be shown (paper 1II) to act
as a parameter upon the next higher level. Thus, an
extrinsic control achieved by specific systems, such as
the nervous or hormonal systems, is added to the
intrinsic one. In the nervous system, a neuron or a
group of neurons acts on another and modifies its
activity.

(b) Levels of organization in the nervous system

(i) Derivation from the definitions

With the general concepts introduced in the fore-
going section, it is possible to identify two levels of
organization: the set of neurons and the set of
structures in one neuron. But, with groups of neurons
and intracellular structures, at least five levels may
exist in the central nervous system. Specifically, in a

Phil. Trans. R. Soc. Lond. B (1993)

N3(0)*u3(P3,P4, ..

)y NOwuy(Ps,Pyy .. .),-

given area of the cell, (i) membrane structures like
synapses, extra- and intra-synaptic channels and
receptors, and (ii) internal neuronal cytoplasmic
structures, are associated in a collective function
which determines the soma membrane potential, the
modification of which can give rise to an action
potential. Let EA:’”’ =5, be this set of substructures.
Then s,, « = 1, N is one element of the set E4” that
produces the action potential. That is to say, E4 is
the set of structural units s;,59, . . ., S5 . . . which
participate in the emission of an action potential. The
set EMP constitutes one level of organization, and E4”
is another level of a hierarchical functional system
(figure 6). Therefore, dynamical equations apply to
these interactions from one element s; to another s,
localized in the space of synapses, the s-space denoted
D,. Since s, contains extrasynaptic elements, such as
voltage-dependent channels or cytoplasmic structures,
we shall call each element in E4” a ‘synapson’.

Let u15(t) be the functional interaction between two
such elements s; and sy localized in D,. With these
notations, ui9(¢) will describe the ability of a synapse
(synapse 1) to conduct the signal from the presynaptic
to the postsynaptic neuron, but it also represents the
action from one synapse s; to another s, by diffusion of
the mediator in the extracellular medium, or via the
membrane or the cytoplasm (cytoskeleton), or because
of electrotonic conduction. At this point it is not useful
to go into further details, but it is important to note
that the abstract representation must contain all the
physiological elements that participate in the propa-
gation of the signal. The transport of the signal
between two synapsons s; and s, can be specifically
described according to the equation:

Dy(sy) = ,1412(@1;51),

where @ is the postsynaptic potential that results from
a sequence of phenomena such as transmitter release
in the synaptic cleft, binding with postsynaptic recep-
tors, and ion channel activation. The postsynaptic

(38)

. neurons
y-equation N, Y DN 2
— .
p, Q07 p, A
LN 2 /N
W NN 7N
N X . synapsons
. - . ~ / N,
W-equation  ~f = S, &, \/\Z b, N E;
AP g S O = ’S —2 3 Sa
B §c $2+0 as, 0’S, 2
Ve 12 FAN | @
7 T RN 1,1 Loy
/ \ ¥ \
Y \ '/ \
d——-0 e channels, receptors
o intra- and extrasynaptic,
MP AR Eo, topl
EM VRN cytoplasm
ll ‘\
! ~ molecules

Figure 6. Functional organization in the nervous system
with, at least, three levels of organization. A neuron N; is
considered to be composed of ‘synapsons’ s;, j=1, n; at the
lower level. Each synapson is composed of structural units
channels, receptors, etc. Functional interactions are repre-
sented by Y12, w1z, etc. Levels are denoted by EYY, Ef'*, EMP,
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potential @, results from: (i) non-local interaction due
to, among other causes, the electrotonic conduction;
(ii) local transformation localized in s, due to internal
biochemical processes, and which is, for this reason,
called a source. The equation that describes the time-
evolution of the uqo’s is:

dp/dt = f.(wm), (39)
where 7 represents the geometrical factors that deter-
mine the connectivity and the number of synapsons.
Finally, the synaptic level of organization E*f =
{sx,Ya} is represented by extrasynaptic and synaptic
structures s, with a functional interaction between the
structures, and a local transformation within the
structures.

(i1) Interpretation based on the general schema of self-association
(paper 1)

We have shown in paper I (equation 12) that the
diagram:

P
P, - P;
VAN 2

P; (40)

represents a sequence @ of a non-local interaction ¥
(left part) between two units # and ¥, and local
transformations ¢ (right part) in «*. This elementary
diagram has been generalized into an abstract compo-
site diagram (paper I, schema 15):

oy oy oy oy
P> P —» P - Pf—> ...
1 2 3 4

all al] «f| all

P> P> P; > P, —> ...
0y Oy o3 Oy (41)

Such schemes result from the general description of
the theory. In the following, we will describe how they
can be interpreted for the two present levels of
organization of the nervous tissue.

The set Ei** = {s;,& = 1,n,} of n, synapsons s, consti-
tutes the 1-neuron. The collective behavior of E{f is to
produce an action potential ¥; that acts upon another
set Egf = {52, = 1,ny} of ny synapsons, i.e. a 2-neuron
set, that produces an action potential ¥, (figure 6).
Therefore, the set of neurons E*", which is a real
neural network localized in a space denoted the r-
space, constitutes a third level of organization. In
other words, a structural unit of the neural network is
composed of the structural units that are represented
by one set of synapsons (the neuron), with functional
interactions between them due to their connectivity.
These interactions couple the two levels of organiza-
tion, because one neuron is connected to other
neurons via their synaptic connections, i.e. the units of
the second level directly connect (regarding their
topology and not their possible distance) the units of
the first level. Because the end-product in relations
(41) can be interpreted as the membrane potential,
the non-local and non-symmetric transport function
g = Y as the transport of the action potential, and the
local transformations at the lower level as the non-
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symmetric interactions between synapses, diagram
(40) can be represented:

(]
1}/1 d ?’2
pe N 2 I,
o, (40')

and, by using the diagram (41) extended to two levels
of organization (thus with a different meaning for the
lines), we can obtain at least for the two first steps:

v, - ¥,
o1 T I
(¢a)1 - (¢a)2

iz (41")
This diagram shows the two levels of organization with
their respective functional interactions g and . In
this diagram, the two subscripts 1 and 2 at the lower
level correspond to each of the neurons of the upper
level: This is included in the notation of the functional
interaction uis,i = 1,2. The local transformations in
each ¢-neuron (i = 1,2) are represented by I;. Two
consequences appear from this abstract represen-
tation: (i) because each neuron is at a different
location in physical space, the interaction is a field
variable and I3 is the source of the field (Chauvet
19934,6). We have the same consequence for the
synapses. Moreover, as will be shown in more detail in
paper III, interactions are non-local and non-sym-
metric; and (ii) the abstract diagram (41) is very
general, and valid for many systems, because the
fundamental concepts of non-locality and non-sym-
metry, and the functional hierarchy thereof, are
included. The self-association hypothesis on which the
present formulation is based, leads to an hierarchical
interpretation of the nervous system. In the specific
example described in paper I, a micromutation was
the source of the association between two structural
units, one is ‘normal’ and the other is ‘pathological’ or
‘modified’. The related physiological process is non-
symmetrical because the global result of the transport
is positive from u to u*, even in the case of pure
diffusion. Any kind of transformation can lead to such
a schema, particularly a structural transformation in
the unit which involves a functional modification. For
example, in the case of the nervous tissue, a neuron u*
is different from a neuron u because of a difference of
synaptic structure, e.g. due to the connectivity. It is
known that an isolated neuron cannot survive. We
may therefore say that, for its survival, each neuron
has to associate with at least another. The association
between two neurons corresponds to the diagram (40")
and the collective function of emitting an action
potential to act on the second neuron corresponds to
the diagram (41’). An important question is to know
whether there is an increase of the domain of stability
after association (see paper III). This question is
related to the dynamics of the system, which can be
expressed according to the diagram (40") by ¥, =
Yip( 1) or:

¥, = F[(¢clz,2)1>(¢}t’2)2;l“'127[‘2]‘ (42)
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This equation is obviously more complicated than the
preceding because of the couplings between the two
levels of organization. Finally, the dynamics of the
functional interaction ¥, are governed by:

dap/dt = f(Yra5uissp,m), (427)

where p is the density of neurons, and = is the
density-connectivity of synapses between neurons.
This equation yields u}3 as a parameter: pliZ, which is
a variable at the first level satisfying equation (39),
constitutes a parameter for the second level. This
parameter, which concerns the (p-rBs), will be studied
in paper III.

(¢) Extremum hypothesis

The potential of functional organization can be
calculated from equation (1) as follows. The link
between two neurons is, in fact, the link between one
neuron, the source, and several sinks, the synapses in
the neuron target. Therefore, the two levels of organi-
zation previously described have to be considered for
the determination of the potential of functional
organization. The ‘product’ can be identified as the
electrical potential transmitted between the two neu-
rons, including axon and dendrites which are the
support of these potentials. For example, we can
consider the simple monosynaptic pathway repre-
sented in figure 7, where two layers of pre- and
postsynaptic neurons at r and 7, respectively are
separated by a given number of synapses at s.
Formally, each neuron target at 7, is coupled with a
source at r through the synapses sinks.

Under the conditions of the above theory, we study
the growth of such a nervous monosynaptic tissue
when the number of sinks varies in the system that is
constituted of v neurons. Let n be the number of

(r) (s) (1)

Figure 7. A monosynaptic pathway in the nervous system
represented as the two sets of sources and sinks in the general
theory. Neurons at 7y contain synapses s originating from
neurons at 7. The calculation of the potential of organization
has to take into account this specific organization.
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neuron targets, N =v —n the number of neuron
sources, because a sink cannot be a source for the same
product, i.e. a transformation exists in the source, and,
therefore, because of the following constraint: number
of neuron sources + number of neuron targets = total
number of neurons. Let g(n) be the number of
synapses for the kth target-neuron, £ = 1,n. Then, the
number of potential associations is:

n

o=T](Ch+C2+...+C%), (43)

k=1

and, from definition VI, the potential of organization
is:

II= ) In(Cy +Ck+...+C%), (44)

k=1

which is a generalization of equation (3). In paper
ITI, a more precise expression will be given as a
function of the spatial location of neurons and
synapses. It is possible to show that IT satisfies
property II, i.e. the existence of a maximum for the
curve II(n). Such a function can be expressed by
means of a function of repartition, and exact results
for the potential of organization can be deduced. In
the particular case where ¢ € N with g, large enough,
for example, g, ~ 100, N ~ 10000. Then the sum in
(44) is equivalent to the term with largest degree in g;:

0 =TT (N#/g, 1), (45)

and:

k=1

II(n) = (kilgk>lnN — Z”: In(g,!). (46)

By applying the Sterling formula: g;! >~ g, In g, — g,
g large, we have:

(n) = igk<l+lnv_n>. (47)

k=1 8k

The variational approach can be applied to the
nervous system by varying the number v — n and # of
pre- and post synaptic neurons. In this case, the
number g, of synapses is obviously variable: g, = g(n).
The calculation of the differential of IT gives:

dIT(n) =

d — vV—n
Z<—d§fln3—? - -gk—>dn + g.(n) (1 +1In >
n

B 8k v—n &n
(48)

As shown in figure 8, the sum of n functions

gk(n)< I +1In vg/;ﬂ)”)

that have one and only one maximum also has this
property. A sufficient condition of existence of a
maximum is that curve 1/X cuts the curve InX where
X = (v —n)/g, i.e. function g,(n) describes an increase
in the total number of synapses with the number of
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degree = 10 20 30

sinks

40 50 .60 sum

Figure 8. Potential of functional organization for the monosynaptic pathway represented in figure 7. The
fundamental property is again obtained: there is a maximum for each term of the sum, and thus for the potential

II(x).

neurons. Because this property can be accepted in
absence of re-organization:

i)
—g>0,

n dn > 0,

we can assume that the monosynaptic pathway satis-
fies property II of the general theory. Is this system an
element of the class of biological systems that satisfy
the extremum hypothesis? In other words, according
to property III, do these systems lead to monotonic
dynamics of the number of sinks? It is known (see, for
example, Hopkins & Brown (1984)) that, after a
period which corresponds to proliferation and settling
at their final destination, during which the number of
neurons rises to a maximum, extensive death elimi-
nates at least half of the total number of neurons.
Neuronal death is a major event in neuronal develop-
ment. In the proposed theory, the initial time of the
dynamics of the sinks corresponds to the time where a
given functional process starts. This theory predicts
the existence of two different functional processes. The
first concerns the proliferation by cell division (v
increases, dF(v) > 0), from initial time to a maximum,
then a second process (different from a physiological
point of view) that concerns the organization of
synaptic connections with a decrease in the number n
of neuron targets. Simultaneously, a re-organization of
synaptic connections is observed such that the number
of synapses decreases (g < 0,0F(v) <0). Are these
predictions verified? It is known that there exists an
elimination of multiple innervation in the submandi-
bular ganglion of the rat which corresponds to what
we have called ‘specialization’ (figure 9). Thus, the
consequences of the present theory agree with experi-
mental observations, including the polysynaptic path-
way. All of these arguments agree to assume that the
potential of functional organization remains maxi-
mum during development. Of course, it will be
necessary to enter into more details, e.g. to find out
the dynamics of the sinks, and to use the exact
conditions of derivation for equation (47), but the
preliminary results obtained here give the bases of a
variational approach. In paper II1, it will be shown

Phil. Trans. R. Soc. Lond. B (1993)

the effect of dynamics on the variation of the number
of sinks, i.e. the coupling between a physiological
function such as learning (the process) and the
functional organization (the synaptic specialization).

7. CONSEQUENCES AND CONCLUSION:
BIOLOGICAL AND PHYSICAL SYSTEMS

(a) (Structural) entropy and (functional) orgatropy

For a molecular gas described by a velocity distribu-
tion function f(v), Boltzmann (1872) defined the
quantity f1:

H=[[[f(v)Inf(v)do,

such that d/f < 0. Later, Boltzmann (1877) identified
the quantity H with the entropy S:

S=—kH.

Therefore: dS = 0. In that expression, £ is the Boltz-
mann constant. This definition is statistical in charac-
ter, because it is based on the statistical mechanical
description of a molecular gas. More generally, a
statistical mechanical definition of §, valid for an
arbitrary system obeying the laws of classical mecha-
nics in canonical form versus phase variables ( p,q), is:

S = —kIf(p:9)Inf(p,q)dpdy.
Then Gibbs (1902), with his formulation in terms of

Figure 9. Mechanism of specialization in the nervous system
during development. The synaptic connections between two
neurons are suppressed. This fact corresponds to the pro-
perty of ‘specialization’, and verifies the prediction of the
present theory, at least for the nervous system.
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Table 1. Comparison between physical systems and biological systems

function derivative
i =
structural organization (in physical isolated thermodynamical entropy S dS/<0
tems and biological systems) neguentropy N=-S dys<0
sy$ Y Lyapounov function P=d;§ P=0 dP<O0
. L L . orgatropy F dF(v)>0 OF(v)<0
functional lorgamzatlon (in biological { functional order O—_ 50>0
systems only) Lyapounov function 2<0 002=0

statistical ensembles, conceived entropy as an ensem-
ble property. This definition of entropy provides a link
between information and entropy. Our definition of
orgatropy F is of a different nature:

1. F(v) describes the maximum potential of organiza-
tion I1,,, for a non-statistical ensemble.

2. The definition of IT elicits a property of non-
symmetry expressing the fact that a source is not
equivalent to a sink. This property appears as basic: in
physics, interaction is a force which couples two
elements (action and reaction imply interaction); in
biology, the functional interaction describes a non-
symmetrical effect of one element on another. So,
distinctive roles are attributed to the source and the
sink.

3. The definition of IT needs an equipotence principle
for each level of organization. In contrast, a physical
system is intrinsically supposed to apply to an equilib-
rium state, and therefore satisfies a principle of energy
equipartition.

4. Orgatropy is a global concept regarding sources
and sinks.

A physical system is defined by the large number of
states in the phase space through which it can pass.
Thus, a definition of the equilibrium state is the
condition of greatest probability with present con-
straints. A biological system is defined, in part, by its
functional topology. The related organizational sys-
tem, represented by (0-FBs), is not statistical in
character, although the dynamic system (p-FBs) has
this property. One important problem will be the
effect of a perturbation of the (p-rBs) related to
geometry on the (o-rBs), i.e. the influence of a
structural perturbation on the functional organiza-
tion.

(b) What is the essential consequence of the
optimum principle?

What is the major result of the theorem on the evolution
of the (o-rBs)? The criterion (7) and the extremum
hypothesis (26) imply an increase in the complexity at
the /-level. At the same time, the system decreases this
complexity by means of a re-organization which, in
turn, increases the number of levels. Assuming the
proposed definitions, it is possible to conclude that an
organism, i.e. a system that possesses both the basic
qualities of being equipotent and mutational, evolves
according to the principles of a decrease in orgatropy
and an increase in functional order.
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This consequence of the optimum principle pro-
vides a definition for living systems, by making a clear
distinction between biological and physical systems
(table 1). The evolution of a physical system is
characterized by an increase in the thermodynamical
entropy, i.e. by an increase in the molecular disorder
(second principle of thermodynamics). Regarding its
structure, i.e. its physical, molecular structure, a
biological system obviously satisfies the second prin-
ciple, which states that the production of entropy
P =45 is a Lyapounov function. In contrast, the
functional organization, which is the critical feature of
a biological system, evolves with a decrease in orga-
tropy and an increase in functional order.

In summary, a living system is characterized by
two complementary sets of mathematical laws: the
first set governs the physical structure with an opti-
mum principle concerning thermodynamical entropy
(Prigogine’s criterion of evolution: Prigogine 1947,
Glansdorff & Prigogine 1971), including living
organisms (Prigogine et al. 1972); whereas the second
set governs the organization of physiological functions
with an optimum principle concerning the potential of
organization. A law concerning the functional order
results from this second optimum principle. The state
functions, and their criterion of evolution, for both
structural organization and functional organization
are summarized in table 1.

(¢) What is the meaning of the optimum principle?

Our theory of functional organization is based on the
extremum hypothesis: a biological system evolves such
that its potential of organization remains maximum.
A sufficient condition of this extemum hypothesis is
the monotonic trend of the dynamics of the sinks
towards an asymptotical limit. Even without the
complete knowledge of the dynamics, such a property
can be experimentally observed and constitutes an
argument if it is observed for a specific biological
system, as we have seen in the case of the nervous
system. Therefore, the problem in biological terms is
to find out if such behaviour can be observed during
development, and, in particular, if during embryoge-
nesis, an organism has an optimum number of sources
which emit chemical products, signals, or execute any
kind of elementary function, necessary for the mainte-
nance of life.

Probably a living system has to have an optimum


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

460 G. A. Chauvet

number of sources, i.e. defined as implying IT maxi-
mum, at least at the beginning of life, before some
adjustments are achieved by intrinsic and/or extrinsic
controls. Then, it could be said that the number of
sinks as a function of time evolves toward a minimum.
For example, we know of the occurrence of sponta-
neous neuronal death during neuroembryogenesis and
of the regression of the number of nerve endings. As
we have shown, the latter process presumably corres-
ponds to ‘learning’ or adaptation to specific circum-
stances. At this point, experimentation will have to be
done on a living system to determine whether the
number of sinks evolves, monotonically, towards a
minimum or a maximum during its development.

This formulation of a biological system was made in
terms of functional interactions in the representation
(¥,p). There is a great difference with the represen-
tation (N,a) (see paper 1), where N (generally a large
number) is the occupation number of a functional
equivalence class, and « is the rate constant between
classes. Statistical methods can be employed: Kerner
(1957, 1972) and Cowan (1968) have transposed
statistical mechanics to population models. Demetrius
(1983, 1984) has extended and found a variational
principle for evolutionary models, and Auger (1986)
has given the conditions for the emergence of a
hierarchy in such systems. All of these methods apply
to structural organizations.

In contrast, this theory concerns functional organi-
zation. It shows that the observed organization, from
among all those that would be possible and lead to the
correct couplings, is the one that implies an increase in
the functional order. This is an optimum constraint
for the physiological mechanisms of an individual
system subject to micromutations. Another constraint
is given by external, i.e. environmental pressure,
which causes the micromutations in the population of
such interactive systems. In paper I, some results were
presented regarding the influence of defined para-
meters on the dynamics of the system (D-FBs). Now,
the problem is to know whether this second constraint
at the level of the population leads to the selection of
the organization that has in fact been chosen during
the course of the species evolution. This problem could
be formalized as follows: does there exist a similar
optimum principle, unifying physiological mecha-
nisms and behavior for the population of biological
systems, that could describe the evolution of func-
tional organization during development at the highest
level of organization? If the answer is positive, then
the highest level of organization in the species popula-
tion would be ecological, because the ‘biological
system’ to be considered is the environment (included
all organisms) and the given organism. In this case,
the set of biological systems in its environment, with
the functional interactions between them describing
their ethological behaviour, would be one and only
one biological system.

The author thanks Professor J. D. Murray and Dr R.
Costalat for helpful discussions and revision of the manu-
script, and is very grateful to the Conseil Général de Maine-
ct-Loire for having supported this research.
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APPENDIX 1. MAXIMUM OF THE FUNCTION
POTENTIAL I1

I. Let us show that II(x) has a maximum at one point
in [0,y — 1]* II(x) = II(xy, . . ., x5) is an application
from [O,v — I]* to R, with v=2eN, u =1 eN and
defined by:

I(x) = i ZIn(v — x,).

a=1"

For all x,g[v — 1]:

O0IT[0x, = In(v — x,) — %,/ (v — x,) .
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Then [T has continuous first partial derivatives. If IT
has a local extremum at one point x° = (x7, . . ., x0),
then the gradient will be zero at x*:

%

or1
Vae[ 1,u] (ax ) V= In(v —x2) —

There is a unique point x€]0,v — 1[ such that:

f(x)=In(v—x) —x/(v—x)=0,

because:  f(0)=Inv >0, f(v—-1)=1-v<0,
F(x) = (x = 2v)/(v — x)? < 0, so that the function fis
continuous, monotonously decreasing in [0,v — 1],
with f(0) > 0, f(v — 1) < 0. Therefore II(x) has a
unique stationary point (¥, . . ., ¥ar).

2. This equilibrium point is a maximum: II(x) has
continuous partial second derivatives Vo,fe[1,u]:

AT x, — 2v 01 B
0x2 (v —x,)? < Ox,0%p N

The point (xp, . . ., x3) will be a maximum if the
second differential 42IT at this point is a positive
definite quadratic form. According to the criterium of
Sylvester, the quadratic form:

1 & P

d%T =- ——dx,d
Qa’ﬂjl 0xd0xﬂ o xﬁ’

=0.

y—x0

0 Vo # .

is definite positive if the ‘descending’ determinants

have alternate signs: §; < 0,0 > 0,03 < 0 . . ., with:
01 011
5;;1? T Oxy0x,
011
1 = 5;‘1? P 5” =
01 01
ox, 0% 0x?

Of course this property is verified.
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APPENDIX 2. STABILITY IN THE SENSE OF
LYAPOUNOV

Because II(x) has a unique maximum [T, at (%,
.« o %), the function D(x) = I, — Il(x) verifies:
D(x) =D(x, . . %) >0Vx# (xar, . . - %a0), D5,

. Xar) = 0.

The stability in the sense of Lyapounov can be
enonced as follows:

If a dynamical system:

dx,/dt = fi(xy, - .

is such that:

Vael 1,u],

" X,)

dD & 0D dx,

o) =0 A B
L 9D
- ozZl 6_%.]2(%'1, > xﬂ) < Os

i.e. the total derivative along the phase trajectories
is negative or null, then (xz, . . ., xp) is a stable
equilibrium point in the sense of Lyapounov (see, for
example, Zubov (1964)). If inside an arbitrary small
neighborhood of (x4, . . ., x3;) one has:

dDjdt < — B < 0,

where f is an arbitrary constant, then the equilibrium
point is asymptotically stable. Figure 3 is an example
of this property of stability.

APPENDIX 3. MAXIMALITY OF THE POTENTIAL FOR INTEGERS NUMBERS

For a partition of v units into two sets, we have shown that, in R, the potential is maximum if the number of units
in each set equals ¢. In N, this property is not verified for small numbers:
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v=2 v=3 v=4 v=>5 v==6 v=28 v=10
n IT n II n I n IT n IT n I1 n IT
00 00 00 00 00 00 00
1 0 1 In2 1 In3 1 In4 1 Inbd 1 In7 1 In9
2 0 2 In4 2 In9 2 Inl6 2 In36 2 1n64
30 3 In8 3 In27 3 1nl25 3 1n343
4 0 4 1Inl6 4 1n256 4 Inl296
50 5 1n243 5 In3125
6 1n64 6 1n4096
70 7 In2187
8 1n256
90

The bold numbers indicate the maximum of the potential: it is clear that this maximum is obtained for three
sets of partition (except for odd v numbers), (2,2), (3,3) and (4,4).
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